

MAY/JUNE

2022

This document covers every aspect of Pre-Release

Material including detailed explanations,

PRE-RELEASE MATERIAL

2210/22

Computer Science

Material including detailed explanations,

Pseudocodes along with their example

expected questions.

running, efficiencies and

Pre-Release Material:

Your preparation for the examination should include attempting the following practical tasks by writing

and testing a program or programs.

A program is needed to allow a Wildlife Park to sell tickets. A booking consists of one or more tickets for

the same day(s) and can be made up to a week in advance. A booking can be made for a visit of one day

or two consecutive days. A booking can have extra attractions included. A booking will be valid for the

day(s) chosen only.

Write and test a program or programs for the Wildlife Park:

• Your program or programs must include appropriate prompts for the entry of data. Data must be

validated on entry.
• All outputs, including error messages, need to be set out clearly and understandably.
• All variables, constants and other identifiers must have meaningful names.

You will need to complete these three tasks. Each task must be fully tested.

Task 1 – displaying the ticket options and the extra attractions available

Set up your program to:

• display the options, attractions and prices for one-day tickets
• display the options, attractions and prices for two-day tickets
• show the days available for booking; assume that there are tickets available for any valid day.

Task 2 – process a booking

Extend your program for Task 1 to:

• input the tickets and extra attractions required, then calculate the total cost of the booking
• allocate a unique booking number
• display the booking details, including the total cost and the unique booking number
• repeat as required.

Task 3 – ensuring each booking is the best value

Check that the total for each booking gives the best value and offer an alternative if this is not the case.

For example, buying two family tickets is better than a group ticket for a group of 10 that includes four

adults and six children.

Page 1

Main Idea of Pre-Release Material:

 This pre-release material contains a table with information of 5 different ticket types along with their

prices and another table with information of 3 different extra attraction types along with their prices.

 It is based on a Wildlife Park which sells tickets.

 A booking can be made which consists of one or more tickets and it can be made either for one day

or two consecutive days.

 The options of ticket types, attractions and prices are separately OUTPUT for one-day and two-day

tickets both.

 The users can then choose from the displayed options and input their ticket type along with

attractions required (users can buy as many tickets as they want).

 Every booking will be allocated a unique booking number.

 The total cost of the booking will be calculated (tickets cost + attractions cost) (prices used for

calculation will be depending on either it is one-day booking or two-day booking) and it will be

OUTPUT alongside the booking details and unique booking number.

 Lastly, the total cost for every booking will be checked to see if it is the cheapest possible total.

 If not, then an alternative ticketing approach would be offered that gives the cheapest possible total.

Explanation of Pre-Release Material:

A program is needed to allow a Wildlife Park to sell tickets. A booking consists of one or more tickets for

the same day(s) and can be made up to a week in advance. A booking can be made for a visit of one day

or two consecutive days.

It can be understood from this piece of text that:

 a single booking can have from one to as many tickets as user wants (no limit).

 it can be made on any day within a week (1-7 days before visit).

 it can be made for either 1-day visit or 2 consecutive days visit (all number of tickets in a single

booking will be either 1-day or all number of tickets in a single booking will be 2-days without any

exception).

A booking can have extra attractions included. A booking will be valid for the day(s) chosen only.

It can be understood from this piece of text that:

 users can choose extra attractions in their booking from the given 3 options (extra attractions are

optional and charged per person).

 booking will be valid only for the day chosen (any 1 weekday) OR

 booking will be valid only for the days chosen (any 2 consecutive weekdays).

Pre-Release May/June 2022

Page 2

WHILE loop will be used to check this condition and ensure that number of adults/seniors do

not exceed 2 and number of children do not exceed 3.

5 total ticket types

Separate tickets cost for 1-day and

2-days booking

for every 1 adult, the child ticket limit variable will be incremented by 2 to make sure that

the condition is satisfied. For example, 4 adults would mean that the statement:

child_ticket_limit  child_ticket_limit + 2

will run 4 times and so:

child_ticket_limit = 0

child_ticket_limit  0 + 2

child_ticket_limit = 2

child_ticket_limit  2 + 2

child_ticket_limit = 4

child_ticket_limit  4 + 2

child_ticket_limit = 6

child_ticket_limit  6 + 2

child_ticket_limit = 8

therefore, 4 adults can bring up to 8 children and so the child_ticket_limit will then be

compared with the number of children being input (using IF statement) to ensure that this

condition is being satisfied.

WHILE loop will be used to check this condition and ensure that number of people in a group

ticket are not less than 6.

Furthermore, the group ticket cost would be calculated by multiplying the price (1-day or 2-

days) with number of people in a group ticket (price per individual person).

Pre-Release May/June 2022

Page 3

3 total extra attraction types

Separate

attractions cost

only users with 2-days booking will be exclusively asked and

allowed for barbecue (condition checked using IF statement).

users with either 1-day booking or 2-days booking will

both be asked and allowed for lion and penguin feeding.

Write and test a program or programs for the Wildlife Park:

• Your program or programs must include appropriate prompts for the entry of data. Data must be

validated on entry.
• All outputs, including error messages, need to be set out clearly and understandably.
• All variables, constants and other identifiers must have meaningful names.

It can be understood from this piece of text that:

 the code must contain formal, suitable and clearly understandable messages/prompts that must be

displayed when asking for input of data.

 the data must be validated through various checks and using selection statements (IF..THEN..END

IF) and conditional loops (WHILE..DO..END WHILE)

 if the input is wrong then the error message must be displayed and it should be formal, suitable

and clearly understandable as well.

 all output of data must be displayed with proper messages/prompts describing what is the output

showing or telling. They should be formal, suitable and clearly understandable as well.

 the program will use a number of arrays, variables and constants which must have clearly

understandable and meaningful names that makes sense. (instead of using names such as $cost,

the meaningful name must be used such as total_cost etc.

Pre-Release May/June 2022

Page 4

Concept and understanding of TASK 1:

Storing the details for ticket types, attractions and prices for 1-day and

2-days both using arrays

Input and validation of the current day and then using it to show the 7

week days available for booking

Variables, constants and arrays declarations

Task 1 – displaying the ticket options and the extra attractions available

Set up your program to:

• display the options, attractions and prices for one-day tickets
• display the options, attractions and prices for two-day tickets
• show the days available for booking; assume that there are tickets available for any valid day.

Displaying the 5 ticket types along with their prices for 1-day booking

Storing the names of 7 week days using arrays

Displaying the 5 ticket types along with their prices for 2-days booking

Displaying the 3 extra attraction types (for 1-day and 2-days booking)

along with their prices per person

Pre-Release May/June 2022

Page 5

Explanation of Algorithm of TASK 1:

In this task, we have to display options, attractions, prices (1-day and 2-days) and days available for booking

along with declaring and initializing suitable data structures for week days, ticket types, one day costs,

two day costs, extra attraction types and extra attraction costs.

We will make use of 1D arrays to store the information relating to 5 ticket types, 3 attractions and prices

for one-day tickets (all of this information is given in the 2 tables given on Pre-release).

This is a demonstration of how all the data will be stored in the arrays according to index number:

• display the options, attractions and prices for one-day tickets

week_days ticket_type

“Monday” “One adult”

“Tuesday” “One child…”

Index

1

2

3 “Wednesday” “One senior”

4 “Thursday” “Family ticket…”

one_day_cost

20.00

12.00

16.00

60.00

two_day_cost

30.00

18.00

24.00

90.00

“Friday” “Groups of…” 5

6 “Saturday”

7 “Sunday”

15.00 22.50

extra_attraction_type

“Lion feeding”

“Penguin feeding”

Index

1

2

3 “Evening barbecue…”

extra_attraction_cost

2.50

2.00

5.00

Pre-Release May/June 2022

Page 6

We will display the extra attractions and its prices collectively for both 1-day and 2-days booking in the end.

Therefore, for now, the display involves output of 5 ticket types and their prices for 1-day booking. It will be

displayed/output using a FOR loop like this:

Running of example code:

ticket_type

“One adult”

“One child…”

“One senior”

“Family ticket…”

one_day_cost

20.00

12.00

16.00

60.00

“Groups of…” 15.00

Index

1

2

3

4

5

Pre-Release May/June 2022

Page 7

Secondly we will output the 5 ticket types and their prices for 2-days booking using a similar FOR loop like

this:

Running of example code:

In this way, the ticket types and their prices for 1-day booking and 2-days booking will be taken from

their locations in the arrays (after being searched according to index value) and PRINTED/OUTPUT

separately.

Lastly, we will display the extra attractions and its prices collectively for both 1-day and 2-days booking. So

the display would involve output of 3 attraction types and their prices for 1-day and 2-days booking. It will

be displayed/output in the same manner using a FOR loop like shown above.

ticket_type

“One adult”

“One child…”

“One senior”

“Family ticket…”

two_day_cost

30.00

18.00

24.00

90.00

“Groups of…” 22.50

Index

1

2

3

4

5

• display the options, attractions and prices for two-day tickets

Pre-Release May/June 2022

Page 8

We will make use of 1D arrays to store the information relating to 7 week days. The user will then be

asked to input number of current day (e.g. 1 for Monday, 2 for Tuesday, 7 for Sunday and so on.). A WHILE

loop will be used for validation and to ensure that any number from 1 to 7 is being entered. Input of any

other number e.g. less than 1 or greater than 7 will output an error message like this:

Then the entered number would be used as an index value and so the week day stored at that location will

be searched and stored in a variable named current_day:

current_day  week_days[today]

So if the user has input 4 in the variable today then the data stored at that location will be searched and

stored in current_day:

week_days[4]  “Thursday”

current_day  week_days[4]

current_day  “Thursday”

Therefore, the following piece of code will show the 7 days available for booking:

PRINT “The upcoming 7 days are available for booking before the next: “, current_day

• show the days available for booking; assume that there are tickets available for any valid day

Pre-Release May/June 2022

Page 9

TASK 1 – Pseudocode:

BEGIN

DECLARE week_days [1:7] AS STRING

DECLARE ticket_type [1:5], extra_attraction_type [1:3] AS STRING

DECLARE one_day_cost [1:5], two_day_cost [1:5], extra_attraction_cost [1:3] AS FLOAT

DECLARE today  0 AS INTEGER

DECLARE current_day  “” AS STRING

week_days[1]  “Monday”

week_days[2]  “Tuesday”

week_days[3]  “Wednesday”

week_days[4]  “Thursday”

week_days[5]  “Friday”

week_days[6]  “Saturday”

week_days[7]  “Sunday”

ticket_type[1]  “One adult”

ticket_type[2]  “One child (an adult may bring up to two children)”

ticket_type[3]  “One senior”

ticket_type[4]  “Family ticket (up to two adults or seniors, and three children)”

ticket_type[5]  “Groups of six people or more (price charged per person)”

one_day_cost[1]  20.00

one_day_cost[2]  12.00

one_day_cost[3]  16.00

one_day_cost[4]  60.00

one_day_cost[5]  15.00

two_day_cost[1]  30.00

two_day_cost[2]  18.00

two_day_cost[3]  24.00

two_day_cost[4]  90.00

two_day_cost[5]  22.50

extra_attraction_type[1]  “Lion feeding”

extra_attraction_type[2]  “Penguin feeding”

extra_attraction_type[3]  “Evening barbecue (for two-day tickets only)”

extra_attraction_cost[1]  2.50

extra_attraction_cost[2]  2.00

extra_attraction_cost[3]  5.00

Pre-Release May/June 2022

Page 10

INPUT “What day is it today? Input 1 for Monday, 2 for Tuesday, 3 for Wednesday, 4 for

 Thursday, 5 for Friday, 6 for Saturday and 7 for Sunday.”, today

WHILE today < 1 OR today > 7

INPUT “Wrong input. Kindly enter what day is it today? Input 1 for Monday, 2 for Tuesday, 3 for

 Wednesday, 4 for Thursday, 5 for Friday, 6 for Saturday and 7 for Sunday.”, today

END WHILE

current_day  week_days[today]

PRINT “Welcome to the Wildlife Park!”

PRINT “The following are 5 ticket types (options) along with their prices for one-day booking:”

FOR count  1 TO 5

PRINT “Ticket type: “, ticket_type[count], “Ticket cost for one-day booking: “, one_day_cost[count]

NEXT count

PRINT “The following are 5 ticket types (options) along with their prices for two-days booking:”

FOR count  1 TO 5

PRINT “Ticket type: “, ticket_type[count], “Ticket cost for two-days booking: “, two_day_cost[count]

NEXT count

PRINT “The following are 3 extra attraction types (options) along with their prices for one-day and

 two-days booking:”

FOR count  1 TO 3

PRINT “Extra attractions: “, extra_attraction_type[count], “Cost per person: “,

 extra_attraction_cost[count]

NEXT count

PRINT “The upcoming 7 days are available for booking before the next: “, current_day

END

TASK 1 – Efficiency:

 Use of ARRAYS to store ticket types, extra attractions and week days.

 Use of different ARRAYS to store prices for one-day and two-day bookings separately.

 Initialization of all ARRAYS with pre-defined values.

 Use of FOR loops to output details of ticket types, attraction types and their prices.

 Use of WHILE loop to validate user input and output appropriate error messages when

validation fails.

Pre-Release May/June 2022

Page 11

TASK 1 – Explanation of Pseudocode:

Pre-Release May/June 2022

Page 12

Pre-Release May/June 2022

Page 13

TASK 1 – Expected Questions:

1. State three arrays you used for Task 1. State the data type and purpose of the arrays.

2. Describe the data structures you have used in Task 1 to store the data for the park. Include the

name(s), data type, sample data and usage for each structure.

3. Write an algorithm for Task 1, using either Pseudocode, programming statements or a flowchart.

4. Write an algorithm for Task 1, using either Pseudocode, programming statements or a flowchart.

Assume that the data structures for storing data have already been initialized with predefined

values.

5. Write an algorithm to complete Task 1 without including any appropriate prompts, using either

Pseudocode, programming statements or a flowchart.

6. Explain how your program completes/performs Task 1. Any programming statements used in your

answer must be fully explained.

7. Explain how you calculated the days available for booking (part of Task 1)? You can include

Pseudocode or programming statements as part of your explanation.

8. Comment on the efficiency of your code for Task 1.

Pre-Release May/June 2022

Page 14

Concept and understanding of TASK 2:

Entire TASK 1 code

Input of how many tickets are required and then input of ticket types

(along with validation for checking conditions) and repeating the

process until required number of tickets have been bought

Variables, constants and arrays declarations

Task 2 – process a booking

Extend your program for Task 1 to:

• input the tickets and extra attractions required, then calculate the total cost of the booking
• allocate a unique booking number
• display the booking details, including the total cost and the unique booking number
• repeat as required.

Calculating the cost of tickets bought depending on 1 day or 2-days

booking

Input and validation of the week day for which booking is made and the

number of days (1 or 2) for visit

Input of extra attractions required and calculating their cost

Allocating a unique booking number

Calculating the total cost of booking and displaying complete booking

details including total cost and unique booking number

Pre-Release May/June 2022

Page 15

Explanation of Algorithm of TASK 2:

In this task, we have to input the tickets required and extra attractions. Then calculate the total cost booking

and allocate a unique booking number. In the end, we will simply output all the booking details.

Firstly, we will input the week day for which user wants to make the booking. Then we will input the number

of days for which booking is required. It would be either:

 1-day booking OR

 2-days booking

A WHILE loop will be used for validation and to ensure that only "1” or “2” are being entered by the user.

Input of any other number of days at this specific stage will output an error message like this:

The user will then be asked to input how many tickets they want to buy. Then accordingly a REPEAT loop

will be used to ensure that the whole process of purchasing a ticket keeps repeating itself until the user has

bought the required number of tickets:

REPEAT

INPUT “How many tickets would you like to buy?”, no_of_tickets

ENTIRE TICKET SELECTION CODE

ticket_count  ticket_count + 1

UNTIL ticket_count = no_of_tickets

• input the tickets and extra attractions required, then calculate the total cost of the booking

A ticket counter is incremented every time the

REPEAT loop (ticket selection code) is run to record

the number of tickets purchased.

The entire ticket selection code will run UNTIL the ticket counter has become equal to the number of

tickets the user wanted to buy (as input by them).

• repeat as required

Pre-Release May/June 2022

Page 16

The user will then be asked to input any 1 ticket type out of 5 (according to their choice). A WHILE loop will

be used for validation and to ensure that only "1”, “2”, “3”, “4” or “5” are being entered by the user. Input

of any other number for choosing ticket at this specific stage will output an error message like this:

The following 5 explanations cover the algorithm for all 5 possible inputs to the variable

selected_ticket_type, calculation of the selected ticket prices and the logic behind each statement used in

the code:

(i) Adult Ticket:

IF statement is used to check that selected_ticket_type = 1. If this is TRUE, then:

The ticket counter for adult ticket type would be incremented with purchase of every 1 adult ticket. There

will also be a child ticket limit which would be incremented by 2 simultaneously every time an adult ticket is

purchased to ensure that the condition given in Pre-release is being satisfied:

condition: an adult may bring up to two children

Example Working:

For every 1 adult, the child ticket limit variable will be incremented by 2 to make sure that the condition is

satisfied. For example, 3 adults would mean that the statement:

child_ticket_limit  child_ticket_limit + 2

will run 3 times and so:

child_ticket_limit = 0

child_ticket_limit  0 + 2

child_ticket_limit = 2

child_ticket_limit  2 + 2

child_ticket_limit = 4

child_ticket_limit  4 + 2

child_ticket_limit = 6

Therefore, 3 adults can bring up to 6 children and so the child_ticket_limit will then be compared with the

number of children being input (using IF statement) to ensure that this condition is being satisfied.

Pre-Release May/June 2022

Page 17

Another IF statement is used to check that no_of_days = 1. If this is TRUE, then the cost for one-day

booking will be used to calculate the price of ticket. If this is FALSE, then the cost for two-days booking will

be used to calculate the price of ticket as given below:

The adult_ticket_count would store the number of adult tickets purchased and it will also be used to

calculate the cost of adult tickets.

For example, if 7 adult tickets were bought then:

 adult_ticket_count  7

 child_ticket_limit  14

IF no_of_days = 1 THEN

 adult_cost  7 * 20.00

 adult_cost  140

ELSE (no_of_days = 2)

 adult_cost  7 * 30.00

 adult_cost  210

(ii) Child Ticket:

IF statement is used to check that selected_ticket_type = 2. If this is TRUE, then:

The child_ticket_limit would be checked for if it is equal to 0. If the child ticket limit is 0 then then the user

will not be allowed to purchase the ticket as the limit has been reached.

If this is FALSE, then the child ticket counter would be incremented and the child ticket limit would be

decremented as another child ticket has been purchased therefore reducing the limit.

Another IF statement is used to check that no_of_days = 1. If this is TRUE, then the cost for one-day

booking will be used to calculate the price of ticket. If this is FALSE, then the cost for two-days booking will

be used to calculate the price of ticket.

The child_ticket_count would store the number of child tickets purchased and it will also be used to

calculate the cost of child tickets.

Pre-Release May/June 2022

Page 18

(iii) Senior Ticket:

IF statement is used to check that selected_ticket_type = 3. If this is TRUE, then senior_ticket_count would

be incremented.

Another IF statement is used to check that no_of_days = 1. If this is TRUE, then the cost for one-day

booking will be used to calculate the price of ticket. If this is FALSE, then the cost for two-days booking will

be used to calculate the price of ticket.

The senior_ticket_count would store the number of child tickets purchased and it will also be used to

calculate the cost of senior tickets.

(iv) Family Ticket:

IF statement is used to check that selected_ticket_type = 4. If this is TRUE, then family_ticket_count

would be incremented.

The following variables would be used for storing the number of adults, seniors and children:

 no_of_adults

 no_of_seniors

 no_of_children

The user would be asked to input the number of adults (max 2). A WHILE loop will be used for validation

and to ensure that minimum: 0 and maximum: 2 adults are only being entered.

IF statement would be used to check that if no_of_adults = 0 then the user would be asked to input the

number of seniors (max 2). A WHILE loop will be used for validation and to ensure that minimum: 0 and

maximum: 2 seniors are only being entered.

Another IF statement would be used to check that if no_of_adults = 1 then the user would be asked to

input the number of seniors (max 1). A WHILE loop will be used for validation and to ensure that minimum:

0 and maximum: 1 senior are only being entered.

All of this is done to ensure that the following condition is being satisfied:

condition: up to two adults or seniors, and three children

So the possible combinations of adults and seniors are:

 2 adults

 2 seniors

 1 adult and 1 senior

The user would then be asked to input the number of children (max 3). A WHILE loop will be used for

validation and to ensure that minimum: 0 and maximum: 3 children are only being entered.

Another IF statement is used to check that no_of_days = 1. If this is TRUE, then the cost for one-day

booking will be used to calculate the price of ticket. If this is FALSE, then the cost for two-days booking will

be used to calculate the price of ticket.

The family_ticket_count would store the number of family tickets purchased and it will also be used to

calculate the cost of family tickets.

Pre-Release May/June 2022

Page 19

(v) Group Ticket:

IF statement is used to check that selected_ticket_type = 5. If this is TRUE, then group_no_of_people

would be input and validated using WHILE loop to ensure that it is greater than or equal to 6.

The total people in a group will be totaled and updated every time a group ticket is purchased to easily

calculate the price per person for all the people in a group:

The following variables would be used for storing the number of adults, seniors and children:

 group_no_of_adults

 group_no_of_seniors

 group_no_of_children

(i) The user would be asked to input the number of adults. A WHILE loop will be used for validation and to

ensure that the number of adults do not exceed the number of total people in the group:

The variable group_no_of_people would be subtracted from the number of adults entered and the child

ticket limit would be updated/increased according to the number of adults entered:

(ii) The user would then be asked to input the number of children. A WHILE loop will be used for validation

and to ensure that the number of children do not exceed the number of total people in the group as well as

the child ticket limit (this is done to ensure that the condition: an adult may bring up to two children is

satisfied):

Pre-Release May/June 2022

Page 20

The variable group_no_of_people would be subtracted from the number of children entered and the child

ticket limit would be reduced according to the number of children entered:

(iii) The user would finally be asked to input the number of seniors. Similarly, a WHILE loop will be used for

validation and to ensure that the number of seniors do not exceed the number of total people in the group.

In the same manner, the variable group_no_of_people would be subtracted from the number of seniors

entered.

This whole process will be repeated using REPEAT loop UNTIL the group_no_of_people = 0 as this

variable was continuously decreasing according to the number of adults, seniors and children being

entered.

For example, if group_no_of_people = 10:

 and group_no_of_adults = 4 so group_no_of_people = 10 – 4

 then group_no_of_people  6

 and group_no_of_seniors = 6 so group_no_of_people = 6 – 6

 then group_no_of_people  0

Therefore, after input of 4 adults and 6 seniors (total 10 people), the group_no_of_people would become 0

and hence the loop will end as chosen number of people have been entered.

IF statement is used to check that no_of_days = 1. If this is TRUE, then the cost for one-day booking will be

used to calculate the price of ticket. If this is FALSE, then the cost for two-days booking will be used to

calculate the price of ticket.

The group_total_people would store the number of persons in a group and it will also be used to calculate

the price per person of everyone in the group.

The whole process of purchasing a ticket keeps repeating itself until the user has bought the required

number of tickets.

Then the user will be asked for input of extra attractions required and their cost would be calculated

simultaneously. The first 2 attractions would be simply input and their cost calculated:

Pre-Release May/June 2022

Page 21

The 3rd attraction would be offered based upon whether it is 1-day or 2-days booking. To ensure if this is a

2-days booking, IF statement would be used and then accordingly the last attraction would be input and its

cost calculated:

The variables used for extra attractions cost:

 lion_feeding_cost

 penguin_feeding_cost

 barbecue_cost

And the variables used for ticket types cost:

 adult_cost

 child_cost

 senior_cost

 family_cost

 group_cost

Will all be added together and then totaled in the following way:

This would complete the calculation of the total cost for booking.

The method used for calculating and then allocating a unique booking number is kept very simple. It is

similar to a counter being incremented (+1) with every single booking to ensure its unique as well as easy:

• allocate a unique booking number

Pre-Release May/June 2022

Page 22

The following booking details will be displayed/OUTPUT:

 The unique booking number

 The week day for which booking is made

 The number of day(s) for which booking is made

 The number of ticket(s) bought

 The number of adult, child, senior and family ticket(s) bought

 The number of people who are a part of group ticket(s)

 The number of people who selected extra attractions like lion feeding, penguin feeding and evening

barbecue

 The separate total cost for extra attractions

 The separate total cost for tickets bought

 The grand total cost for complete booking (extra attractions + tickets cost)

• display the booking details, including the total cost and the unique booking number

Pre-Release May/June 2022

Page 23

TASK 2 – Pseudocode:

BEGIN

[ALL IDENTIFIERS OF TASK 1]

DECLARE booking_day  0, no_of_days  0, no_of_tickets  0, ticket_count  0 AS INTEGER

DECLARE unique_booking_no  0, selected_ticket_type  0 AS INTEGER

DECLARE adult_ticket_count  0, child_ticket_count  0, senior_ticket_count  0

 family_ticket_count  0 AS INTEGER

DECLARE child_ticket_limit  0, group_no_of_people  0 AS INTEGER

DECLARE no_of_adults  0, no_of_seniors  0, no_of_children  0 AS INTEGER

DECLARE group_no_of_adults  0, group_no_of_seniors  0, group_no_of_children  0 AS INTEGER

DECLARE group_total_adults  0, group_total_children  0, group_total_seniors  0,

 group_total_people  0 AS INTEGER

DECLARE adult_cost  0.0, child_cost  0.0, senior_cost  0.0, family_cost  0.0 group_cost  0.0

 AS FLOAT

DECLARE lion_feeding_persons  0, penguin_feeding_persons  0, barbecue_persons  0 AS INTEGER

DECLARE lion_feeding_cost  0.0, penguin_feeding_cost  0.0, barbecue_cost  0.0 AS FLOAT

DECLARE total_attractions_cost  0.0, total_tickets_cost  0.0, total_booking_cost  0.0 AS FLOAT

[ENTIRE PSEUDOCODE OF TASK 1]

INPUT ”Kindly enter the week day for which you want to make a booking. Input 1 for Monday, 2

 for Tuesday, 3 for Wednesday, 4 for Thursday, 5 for Friday, 6 for Saturday and 7 for Sunday.”

 booking_day

WHILE booking_day < 1 OR booking_day > 7

INPUT “Wrong input. Kindly enter again.”, booking_day

END WHILE

INPUT “Kindly enter the number of days for which the booking is required. Input 1 for one day booking

 or 2 for two consecutive days booking”, no_of_days

WHILE no_of_days < 1 OR no_of_days > 2

INPUT “Wrong input. Kindly enter again.”, no_of_days

END WHILE

REPEAT

INPUT “How many tickets would you like to buy?”, no_of_tickets

INPUT “What type of the ticket would you like to buy? Input 1 for Adult Ticket, 2 for Child Ticket,

 3 for Senior Ticket, 4 for Family Ticket or 5 for Group Ticket.”, selected_ticket_type

WHILE selected_ticket_type < 1 OR selected_ticket_type > 5

INPUT “Wrong input. Kindly enter again.”, selected_ticket_type

END WHILE

Pre-Release May/June 2022

Page 24

IF selected_ticket_type = 1 THEN

 adult_ticket_count  adult_ticket_count + 1

 child_ticket_limit  child_ticket_limit + 2

IF no_of_days = 1 THEN

 adult_cost  adult_ticket_count * one_day_cost[1]

ELSE

 adult_cost  adult_ticket_count * two_day_cost[1]

END IF

END IF

IF selected_ticket_type = 2 THEN

IF child_ticket_limit = 0 THEN

PRINT “The current number of adults cannot bring more children.”

ELSE

child_ticket_limit  child_ticket_limit – 1

child_ticket_count  child_ticket_count + 1

END IF

IF no_of_days = 1 THEN

child_cost  child_ticket_count * one_day_cost[2]

ELSE

child_cost  child_ticket_count * two_day_cost[2]

END IF

END IF

IF selected_ticket_type = 3 THEN

senior_ticket_count  senior_ticket_count + 1

IF no_of_days = 1 THEN

senior_cost  senior_ticket_count * one_day_cost[3]

ELSE

senior_cost  senior_ticket_count * two_day_cost[3]

END IF

END IF

IF selected_ticket_type = 4 THEN

 family_ticket_count  family_ticket_count + 1

INPUT “Kindly enter the number of adults. Up to two adults are allowed.”, no_of_adults

WHILE no_of_adults < 0 OR no_of_adults > 2

INPUT “Wrong input. Kindly enter again.”, no_of_adults

END WHILE

Pre-Release May/June 2022

Page 25

IF no_of_adults = 0 THEN

INPUT “Kindly enter the number of seniors. Up to two seniors are allowed.”,

 no_of_seniors

WHILE no_of_seniors < 0 OR no_of_seniors > 2

INPUT “Wrong input. Kindly enter again.”, no_of_seniors

END WHILE

END IF

IF no_of_adults = 1 THEN

INPUT “Kindly enter the number of seniors. Only one senior is allowed.”, no_of_seniors

WHILE no_of_seniors < 0 OR no_of_seniors > 1

INPUT “Wrong input. Kindly enter again.”, no_of_seniors

END WHILE

END IF

INPUT “Kindly enter the number of children. Up to three children are allowed.”, no_of_children

WHILE no_of_children < 0 OR no_of_children > 3

INPUT “Wrong input. Kindly enter again.”, no_of_children

END WHILE

IF no_of_days = 1 THEN

family_cost  family_ticket_count * one_day_cost[4]

ELSE

family_cost  family_ticket_count * two_day_cost[4]

END IF

END IF

IF selected_ticket_type = 5 THEN

INPUT “Kindly enter the total number of people in the group (six or more people).”,

 group_no_of_people

WHILE group_no_of_people < 6

INPUT “Wrong input. Kindly enter again.”, group_no_of_people

END WHILE

group_total_people  group_total_people + group_no_of_people

REPEAT

INPUT “Kindly enter the number of adults in the group.”, group_no_of_adults

WHILE group_no_of_adults > group_no_of_people

INPUT “Wrong input. Kindly enter again.”, group_no_of_adults

END WHILE

Pre-Release May/June 2022

Page 26

child_ticket_limit  child_ticket_limit + (group_no_of_adults * 2)

group_no_of_people  group_no_of_people – group_no_of_adults

group_total_adults  group_total_adults + group_no_of_adults

INPUT “Kindly enter the number of children in the group.”, group_no_of_children

WHILE group_no_of_children > child_ticket_limit AND group_no_of_children >

 group_no_of_people

INPUT “Wrong input. Kindly enter again.”, group_no_of_children

END WHILE

child_ticket_limit  child_ticket_limit – group_no_of_children

group_no_of_people  group_no_of_people – group_no_of_children

group_total_children  group_total_children + group_no_of_children

INPUT “Kindly enter the number of seniors in the group.”, group_no_of_seniors

WHILE group_no_of_seniors > group_no_of_people

INPUT “Wrong input. Kindly enter again.”, group_no_of_seniors

END WHILE

group_no_of_people  group_no_of_people – group_no_of_seniors

group_total_seniors  group_total_seniors + group_no_of_seniors

UNTIL group_no_of_people = 0

IF no_of_days = 1 THEN

 group_cost  group_total_people * one_day_cost[5]

ELSE

 group_cost  group_total_people * two_day_cost[5]

END IF

END IF

ticket_count  ticket_count + 1

UNTIL ticket_count = no_of_tickets

PRINT “Kindly enter the following details if you want to have extra attractions included:”

INPUT “Kindly enter the number of persons who want to feed a lion: ”, lion_feeding_persons

 lion_feeding_cost  lion_feeding_persons * extra_attraction_cost[1]

INPUT “Kindly enter the number of persons who want to feed a penguin: ”, penguin_feeding_persons

 penguin_feeding_cost  penguin_feeding_persons * extra_attraction_cost[2]

IF no_of_days = 2 THEN

INPUT “Kindly enter the number of persons who want to do an evening barbecue”, barbecue_persons

 barbecue_cost  barbecue_persons * extra_attraction_cost[3]

END IF

Pre-Release May/June 2022

Page 27

unique_booking_no  unique_booking_no + 1

total_attractions_cost  lion_feeding_cost + penguin_feeding_cost + barbecue_cost

total_tickets_cost  adult_cost + child_cost + senior_cost + family_cost + group_cost

total_booking_cost  total_attractions_cost + total_tickets_cost

PRINT “The following are your booking details:”

PRINT “The unique booking number is: “, unique_booking_no

PRINT “The booking is made for the following week day: “, booking_day

PRINT “The booking is only valid for following number of day(s): “, no_of_days

PRINT “The following number of ticket(s) were bought: “, no_of_tickets

PRINT “The following number of adult ticket(s) were bought: “, adult_ticket_count

PRINT “The following number of child ticket(s) were bought: “, child_ticket_count

PRINT “The following number of senior ticket(s) were bought: “, senior_ticket_count

PRINT “The following number of family ticket(s) were bought: “, family_ticket_count

PRINT “The following number of people are part of group ticket(s): “, group_total_people

PRINT “The following number of person(s) want to feed a lion: “, lion_feeding_persons

PRINT “The following number of person(s) want to feed a penguin: “, penguin_feeding_persons

PRINT “The following number of person(s) want to do an evening barbecue: “, barbecue_persons

PRINT “The following is the total cost for extra attractions: ”, total_attractions_cost

PRINT “The following is the total cost for tickets bought: ”, total_tickets_cost

PRINT “The following is the grand total cost for complete booking: “, total_booking_cost

END

TASK 2 – Efficiency:

 Use of WHILE loops to validate all user inputs and output appropriate error messages

when validation fails.

 Use of REPEAT loop to allow user to input all ticket choices and as many as they want.

 Use of IF statements to determine the selected ticket type.

 Use of IF statements to determine whether it is 1-day booking or 2-days booking and

then accordingly calculating tickets cost.

 Use of IF statement to ensure that an adult may bring up to two children.

Pre-Release May/June 2022

Page 28

TASK 2 – Explanation of Pseudocode:

Pre-Release May/June 2022

Page 29

Pre-Release May/June 2022

Page 30

Pre-Release May/June 2022

Page 31

Pre-Release May/June 2022

Page 32

Pre-Release May/June 2022

Page 33

TASK 2 – Expected Questions:

1. State two variables you used for Task 2. State the data type and purpose of the variables.

2. Describe the data structures you have used in Task 2. Include the name(s), data type, sample data

and usage for each structure.

3. Write an algorithm for Task 2, using either Pseudocode, programming statements or a flowchart.

You should assume that Task 1 has already been completed.

4. Write an algorithm to complete Task 2 without including any error prompts, using either

Pseudocode, programming statements or a flowchart. You should assume that Task 1 has already

been completed.

5. Explain how your program completes/performs Task 2. Any programming statements used in your

answer must be fully explained.

6. Explain how you calculated the total cost for the booking (part of Task 2). You can include

Pseudocode or programming statements as part of your explanation.

7. Explain how you ensured that the number of children do not exceed the allowed limit. You can

include Pseudocode or programming statements as part of your explanation.

8. Explain how you ensured that the conditions of a family ticket are being satisfied. You can include

Pseudocode or programming statements as part of your explanation.

9. Explain how you validated any two inputs used in Task 2. State one valid and one invalid input to

test your validation methods (valid and invalid test data). You can include Pseudocode or

programming statements as part of your explanation.

10. Write an algorithm for Task 2, using either Pseudocode, programming statements or a flowchart.

Change the algorithm to ensure that one user can only buy 5 tickets. You should assume that Task 1

has already been completed.

11. Write an algorithm for Task 2, using either Pseudocode, programming statements or a flowchart.

Change the algorithm to ensure that evening barbecue is made available for one-day tickets as well.

You should assume that Task 1 has already been completed.

12. Write an algorithm for Task 2, using either Pseudocode, programming statements or a flowchart.

Change the algorithm to ensure that only two-days bookings are allowed. You should assume that

Task 1 has already been completed.

13. Comment on the efficiency of your code for Task 2.

Pre-Release May/June 2022

Page 34

Concept and understanding of TASK 3:

Calculating the family tickets needed for total number of people in

booking and calculating the family tickets cost

Totalling the number of adults, seniors and children in complete

booking and storing them separately

Calculating the group ticket cost for the total number of people

Variables, constants and arrays declarations

Calculating the total cost for purchasing tickets separately

Input of choice to check if the user wants to purchase tickets according

to the cheaper alternative if being offered

Comparing the separate tickets cost, family tickets cost, group ticket

cost and the original total tickets cost (calculated in TASK 2) to

determine the best value for money

Task 3 – ensuring each booking is the best value

Check that the total for each booking gives the best value and offer an alternative if this is not the case.

For example, buying two family tickets is better than a group ticket for a group of 10 that includes four

adults and six children.

Calculating and updating the total cost for complete booking

depending upon the user choice

Pre-Release May/June 2022

Page 35

Explanation of Algorithm of TASK 3:

In this task, we have to check that the total cost for each booking is the cheapest possible cost. If not, then

the newly calculated cheapest possible cost would be offered as an alternative to the user so that they can

save money and choose that instead.

Firstly, we will separately total the number of adults, children, seniors and total people involved in the

booking and then store them in the following variables:

 total_adults

 total_seniors

 total_children

 total_people

The following piece of code would be used with concept of totaling:

Three different total costs for buying tickets would be calculated:

 Calculating the total cost for buying tickets separately

 Calculating the number of family tickets needed to accommodate total people and their costs

 Calculating the total cost for buying group ticket to accommodate total people

(i) Separate Tickets:

IF statement would be used to determine whether it is 1-day or 2-days booking and then accordingly the

individual total number of adults, seniors and children would be multiplied with their individual ticket costs:

This would give the total cost for buying tickets separately from the following 3 ticket types:

 One adult

 One child (an adult may bring up to two children)

 One senior

The total cost would then be stored in the variable separate_tickets_cost.

Check that the total for each booking gives the best value and offer an alternative if this is not the case.

For example, buying two family tickets is better than a group ticket for a group of 10 that includes four

adults and six children.

All variables being

totaled in first 3

statements are

from TASK 2.

Pre-Release May/June 2022

Page 36

(ii) Family Tickets:

First, the total number of adults and seniors would be added together as the family ticket type deals with

adults and seniors as one (up to two adults OR two seniors).

The total number would be stored in variable adults_and_seniors.

IF statement would be used to determine how many family tickets are needed to accommodate the number

of adults_and_seniors. Moreover, DIV and MOD functions will also be used in the process:

Family ticket condition: up to two adults or seniors, and three children

So the limit for family ticket is 2 adults/seniors and 3 children. Therefore 3/2 = 1.5 and so the total number

of adults_and_seniors would be multiplied by 1.5 and compared with total_children.

If the total number of adults_and_seniors * 1.5 is greater than or equal to total_children, only then would

the condition be satisfied and buying family tickets would be an option.

For example, if there are 4 adults_and_seniors and 8 total_children then condition would fail as:

 (4 * 1.5 = 6) which is less than total children (8)

 one family ticket allowed 2 adults/seniors and 3 children

 if there are 4 adults/seniors than 6 children would be allowed (4 * 1.5) (two family tickets)

 so technically it is impossible to accommodate 8 children in the family ticket type.

Similarly, if there are 6 adults_and_seniors and 8 total_children then condition would be satisfied as:

 (6 * 1.5 = 9) which is greater than total children (8)

 one family ticket allowed 2 adults/seniors and 3 children

 if there are 6 adults/seniors than 9 children would be allowed (6 * 1.5) (three family tickets)

DIV/MOD Function:

The IF statement would have determined if buying family tickets is an option (according to checking the

family ticket condition of 2 adults/seniors and 3 children).

If family ticket is checked to be a valid option, only then DIV and MOD functions will be used to calculate

the number of family tickets needed to accommodate the adults/seniors and children:

 DIV gives us the integer value which is quotient.

 MOD gives us the remainder.

We are dividing adults_and_seniors by 2 because for every 1 family ticket, 2 adults/seniors are allowed.

Hence if there are 14 adults/seniors then 14 divided by 2 is 7 which is the number of family tickets needed

to accommodate 14 adults/seniors. 7 family tickets can accommodate 14 adults/seniors (as 1 ticket allows

up to 2 adults/seniors)

Pre-Release May/June 2022

Page 37

For example:

 6 DIV 2 = 3 (integer value)

 9 DIV 2 = 4 (integer value)

 6 MOD 2 = 0 (no remainder)

 9 MOD 2 = 1 (remainder)

The value of quotient (DIV function) and remainder (MOD function) would be added together to calculate

the number of family tickets needed to accommodate the amount of adults/seniors.

For example, if adults_and_seniors = 11:

 family_tickets_needed  (adults_and_seniors DIV 2) + (adults_and_seniors MOD 2)

 family_tickets_needed  (11 DIV 2) + (11 MOD 2)

 family_tickets_needed  (5) + (1)

 family_tickets_needed  5 + 1

 family_tickets_needed  6

Therefore, 6 family tickets are needed to accommodate 11 adults/seniors.

You can also manually calculate this to understand the concept of approaching DIV and MOD functions in

the algorithm.

Manual Calculation:

 2 adults/seniors = 1 ticket

 11 adults/seniors = 11/2 = 5.5 tickets

 Now since you know that a half ticket cannot be bought therefore it will be rounded to the nearest

integer

 Hence, 5.5 rounded  6 family tickets

Another IF statement would be used to determine whether it is 1-day or 2-days booking and then

accordingly the total number of family tickets needed would be multiplied with the family ticket cost:

The total cost would then be stored in the variable family_tickets_cost.

Remainder

Pre-Release May/June 2022

Page 38

(iii) Group Tickets:

IF statement would be used to determine if the total number of people is greater than 6:

Group ticket condition: groups of six people or more

If the condition is TRUE, then another IF statement would be used to determine whether it is 1-day or 2-

days booking and then accordingly the total number of people would be multiplied with the group ticket

cost:

The total cost would then be stored in the variable group_tickets_cost.

Pre-Release May/June 2022

Page 39

The three different total costs for buying tickets have been calculated and then the comparisons would be

made between four total costs:

 separate_tickets_cost

 family_tickets_cost

 group_tickets_cost

 total_tickets_cost (which is the original cost calculated according to user inputs for selection of

tickets)

Multiple IF statements would be used to make comparisons between all 4 total costs. If any cost is cheaper

than all others, it would be stored in the variable cheapest_cost and the user would be shown the cheapest

total cost alongside the ticketing method used for finding this best value for money:

If none of the 3 calculated total costs is cheaper than, the user would be shown the original tickets cost

calculated in TASK 2 according to user inputs for selection of every ticket(s):

Pre-Release May/June 2022

Page 40

Then an IF statement would be used to check if there is any cheaper total as compared to the original total

cost. If the variable cheapest_cost is not zero and so has some value stored, then it means that a cheaper

total exists and so the user would be asked to INPUT a choice regarding if they want to purchase tickets

according to the cheaper alternative:

Another IF statement would be used to determine choice. If the user has chosen the cheaper alternative

then the total_booking_cost (TASK 2) would be updated by adding the new total tickets cost stored in

cheapest_cost and total_attractions_cost (TASK 2).

The user would then simply be shown their updated booking cost:

If the user has denied the cheaper alternative and chosen their original tickets and booking cost then the

user would simply be shown their unchanged tickets cost and booking cost:

Pre-Release May/June 2022

Page 41

TASK 3 – Pseudocode:

BEGIN

DECLARE total_adults  0, total_seniors  0, total_children  0, total_people  0 AS INTEGER

DECLARE adults_and_seniors  0, family_tickets_needed  0 AS INTEGER

DECLARE separate_tickets_cost  0.0, family_tickets_cost  0.0, group_tickets_cost  0.0 AS FLOAT

DECLARE cheapest_cost  0.0 AS FLOAT

DECLARE choice  “” AS STRING

total_adults  adult_ticket_count + no_of_adults + group_total_adults

total_seniors  senior_ticket_count + no_of_seniors + group_total_seniors

total_children  child_ticket_count + no_of_children + group_total_children

total_people  total_adults + total_seniors + total_children

IF no_of_days = 1 THEN

separate_tickets_cost  (total_adults * one_day_cost[1]) + (total_seniors * one_day_cost[2]) +

 (total_children * one_day_cost[3])

ELSE

separate_tickets_cost  (total_adults * two_day_cost[1]) + (total_seniors * two_day_cost[2]) +

 (total_children * two_day_cost[3])

END IF

adults_and_seniors  total_adults + total_seniors

IF adults_and_seniors * 1.5 >= total_children THEN

family_tickets_needed  (adults_and_seniors DIV 2) + (adults_and_seniors MOD 2)

IF no_of_days = 1 THEN

family_tickets_cost  family_tickets_needed * one_day_cost[4]

ELSE

family_tickets_cost  family_tickets_needed * two_day_cost[4]

END IF

END IF

IF total_people >= 6 THEN

IF no_of_days = 1 THEN

group_tickets_cost  total_people * one_day_cost[5]

ELSE

group_tickets_cost  total_people * two_day_cost[5]

END IF

END IF

Pre-Release May/June 2022

Page 42

IF separate_tickets_cost < family_tickets_cost AND separate_tickets_cost < group_tickets_cost

 AND separate_tickets_cost < total_tickets_cost THEN

cheapest_cost  separate_tickets_cost

PRINT ”The best value for money is to buy separate tickets for each adult, child and senior”

PRINT “The cheapest total cost for tickets would be: “, cheapest_cost

ELSE IF family_tickets_cost < separate_tickets_cost AND family_tickets_cost < group_tickets_cost

 AND family_tickets_cost < total_tickets_cost THEN

cheapest_cost  family_tickets_cost

PRINT ”The best value for money is to buy the following number of family tickets: “,

 family_tickets_needed

PRINT “The cheapest total cost for tickets would be: “, cheapest_cost

ELSE IF group_tickets_cost < separate_tickets_cost AND group_tickets_cost < family_tickets_cost

 AND group_tickets_cost < total_tickets_cost THEN

cheapest_cost  group_tickets_cost

PRINT ”The best value for money is to buy the group ticket for following number of people: “,

 total_people

PRINT “The cheapest total cost for tickets would be: “, cheapest_cost

ELSE

PRINT “The best value for money is to buy the tickets exactly the way you have bought”

PRINT “The cheapest total cost for tickets is: “, total_tickets_cost

PRINT “The following is the total cost for extra attractions: ”, total_attractions_cost

PRINT “The following is the grand total cost for complete booking: “, total_booking_cost

END IF

END IF

END IF

IF cheapest_cost <> 0 THEN

INPUT “Would you like to purchase tickets according to the cheaper alternative being offered?

 Y or N?”, choice

WHILE choice <> “Y” OR choice <> “N”

INPUT “Wrong input. Kindly enter again”, choice

END WHILE

END IF

Pre-Release May/June 2022

Page 43

IF choice = “Y” THEN

total_booking_cost  total_attractions_cost + cheapest_cost

PRINT “You selected the alternative total for the booking which gives the best value: ”

PRINT “The following is the total cost for extra attractions: ”, total_attractions_cost

PRINT “The following is the updated cheapest total cost for tickets bought: ”, cheapest_cost

PRINT “The following is the updated cheapest grand total cost for complete booking: “,

 total_booking_cost

END IF

IF choice = “N” THEN

PRINT “You did not select the alternative total for the booking which gives the best value: ”

PRINT “The following is the total cost for extra attractions: ”, total_attractions_cost

PRINT “The following is the total cost for tickets bought: ”, total_tickets_cost

PRINT “The following is the grand total cost for complete booking: “, total_booking_cost

END IF

END

TASK 3 – Efficiency:

 Use of concept of TOTALLING to calculate the total adults, seniors, children and people.

 Use of IF statements to determine whether it is 1-day booking or 2-days booking and

then accordingly calculating tickets cost.

 Use of IF statements to compare different costs and then calculate the cheapest total

cost.

 Use of IF statements to input user choice regarding cheaper alternative and then

accordingly displaying the total booking cost.

 Use of DIV and MOD function to calculate the number of family tickets that the user can

purchase to accommodate all people.

 Use of WHILE loop to validate all user inputs and output appropriate error messages

when validation fails.

Pre-Release May/June 2022

Page 44

TASK 3 – Explanation of Pseudocode:

Pre-Release May/June 2022

Page 45

Pre-Release May/June 2022

Page 46

Pre-Release May/June 2022

Page 47

TASK 3 – Expected Questions:

1. State two variables you used for Task 3. State the data type and purpose of the variables.

2. Describe the data structures you have used in Task 3. Include the name(s), data type, sample data

and usage for each structure.

3. Write an algorithm for Task 3, using either Pseudocode, programming statements or a flowchart.

You should assume that Task 1 and Task 2 have already been completed.

4. Write an algorithm to complete Task 3 without including any output messages, using either

Pseudocode, programming statements or a flowchart. You should assume that Task 1 and Task 2

have already been completed.

5. Explain how your program completes/performs Task 3. Any programming statements used in your

answer must be fully explained.

6. Explain how you calculated the alternative best value for money (part of Task 3). You can include

Pseudocode or programming statements as part of your explanation.

7. Comment on the efficiency of your code for Task 3.

Pre-Release May/June 2022

Page 48

